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1. PRD Risk Title:  Risk of Impaired Ability to Maintain Control of Vehicles and Other 
Complex Systems   

 
Description (Updated since PRD release): Space flight alters sensory-motor function, as 
demonstrated by documented changes in balance, locomotion, gaze control, dynamic visual 
acuity, eye-hand coordination, and perception. These alterations in sensory-motor function affect 
fundamental skills required for piloting and landing airplanes and space vehicles, driving 
automobiles and rovers, and operating remote manipulators and other complex systems. 
However, relationships between the physiological changes and real-time operational 
performance decrements have not yet been established, owing to both the inaccessibility of 
operational performance data and the presence of confounding, non-physiological factors in most 
known instances of significant operational performance decrement. While space-flight induced 
alterations in sensory-motor performance are of concern for upcoming lunar missions, they are of 
greater concern for Mars missions due to the prolonged microgravity exposure during transit, 
which will more profoundly affect landing task performance and subsequent operation of 
complex surface systems. 
 
II. Executive Summary of Evidence for Risk 

 
Piloting spacecraft, especially through landings and rendezvous, and operating complex 

systems, such as robot arms and surface rovers, requires acute sensory-motor and cognitive skills 
as well as intensive training. A large body of extant experimental evidence demonstrates that the 
G transitions associated with spaceflight alter sensory-motor function, likely through adaptive 
mechanisms in the central nervous system (CNS) responding to loss (or return) of gravity-
mediated stimulation of various sensory receptors. Changes observed in visual acuity, eye-hand 
coordination, and spatial orientation perception show significant performance decrements at (or 
soon after) G transitions that diminish with time thereafter. These spaceflight-related changes 
affect different crewmembers to different degrees, but for all crewmembers they become more 
profound and take longer to resolve as mission duration increases. There is also evidence 
suggesting that cognitive function is affected by spaceflight either through direct microgravity 
effects or through non-specific stress effects. It is likely that these changes affect crew 
performance of complex manual control tasks, particularly those required during dynamic 
(accelerating) phases of a mission. Whether these effects are operationally significant remains 
unknown, as the available evidence is so far largely indirect. Nevertheless, review of the Apollo 
landing and rover operations experiences suggest that the possible operational impacts of 
alterations in sensory-motor performance should be of concern for lunar missions. Furthermore, 
these alterations should become a greater concern for Mars missions due to the prolonged 
microgravity exposure during transit. The true operational risks will only be estimable when we 
can accurately assess integrated performance in off-nominal operational settings. Exclusive crew 
selection procedures, intensive crew training, and highly reliable hardware/software systems 
have likely minimized the operational impacts of these sensory-motor changes to date, but the 
impacts of new mission characteristics (especially duration) and vehicle designs may offset some 
of these benefits. 
 

 
III. Risk in Context of Exploration Mission Operational Scenarios 
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1. Piloted Landings  
 
Piloting a space craft through entry and landing is one of the most difficult tasks associated 

with spaceflight. The consequences of failing to complete this task successfully could be 
catastrophic, resulting in loss of life, vehicle, or other assets. While all piloted landings from 
space have been successful to date, the landing performance has been lower than desired for both 
the Shuttle and the Lunar Lander. To the extent physiological adaptations play a role in these 
performance decrements, we can anticipate that the risk of failure will become much greater 
during Mars missions. There is strong evidence that the six-month outbound trip will cause a 
much more profound sensory-motor adaptation to zero-g than occurs during a 1-2 week Shuttle 
mission. This will likely lead to a much more profound physiological response to the g-transition 
during entry/landing, although the impact of the reduced amplitude (3/8 G vs. 1 G) of the 
transition is unknown. Furthermore, piloting recency will decrease from 1-2 weeks during the 
Shuttle program to six months during a Mars mission, decreasing the probability that a pilot will 
be able to fly through any spatial disorientation that accompanies the g-transition. Even piloted 
landings on the Moon present some unique risks, despite the relatively short zero gravity transit 
phase, owing to the effects of the novel gravitational environment on spatial and geographic 
orientation and the potential for lunar dust obscuring vision during critical phases of landing. 

 
2. Rover Operations  

 
The risk of performance failure while driving an automobile (loss of vehicle control; 

having an accident) is high for vestibular deficient patients and for those whose cognitive and/or 
sensory-motor functions are impaired by ethanol, fatigue, or certain medications. Crewmembers 
readapting to Earth-gravity following return from spaceflight exhibit similar performance 
decrements, and, as a result, are currently restricted from driving automobiles for a short time (2-
4 days) after Shuttle missions and a longer time (8-12 days) after ISS missions. The impact of 
sensory-motor adaptations on driving rovers on either Moon or Mars is unknown. While the 
potential consequences of performance failure while driving a rover are less than those of 
piloting a space craft through entry and landing, the possibility of crew injury (or death) or loss 
of the rover exists, particularly in the vicinity of steep-sided craters. The duration of the initial 
adaptation period to the Lunar or Martian gravity environment is also unknown, and, while likely 
to be proportional to the time spent in zero gravity transit, cannot be determined until it can be 
measured on the planetary surface. Thus, the amplitude and duration of increased risk during 
rover driving are currently unknown. 

 
3. Rendezvous/Docking and Remote Manipulator System Operations  

 
Performance data on rendezvous/docking has so far eluded the authors. However, the 

incidence of performance failure during remote manipulator operations aboard the Shuttle and 
ISS has been fairly well characterized (at least operationally). There is no reason to suspect that 
performance of these zero-g operations will be any different from our ISS experience during an 
outbound transit to Mars. Thus, we would not expect the risk to increase. However, the risk 
impacts of an additional 18 months at Mars gravity followed by six months at zero-g during 
return transit are unknown, and may well lead to an unacceptable range.  

 
4. Other Complex Systems  
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The risk of performance failure during operation of any complex system is multi-factorial. 
However, operation of any system requiring good visual acuity, eye-hand coordination, 
(balance/locomotor skills for surface operations), spatial orientation, and/or cognition could be 
impaired by physiological adaptations to novel gravitational environments. The risk of 
impairment is generally greatest during and soon after G transitions, but the amplitude and 
duration of the increased risk would need to be evaluated on a system-by-system basis. 
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